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Abstract 
 

Microscopy has fueled biological discoveries for centuries, but technical progress 

during the last decades has greatly expanded the type and quantity of biological 

information that can be revealed by imaging. Advances in instrumentation, labeling 

and computation are driving an imaging data tsunami on par with that of DNA 

sequencing. We illustrate this trend on five data intensive microscopy techniques and 

discuss some of the challenges and opportunities that massive imaging data raise for 

our understanding of biological systems. 
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Imaging technique 

Data 
production 

rate 
Example 

references 

a Single 
molecule 

localization 
microscopy 

(SMLM) 
 

 

~10 GB/h-
1TB/h [1][2][3][4][5][6] 

b 
High-content 
image-based 

screening 
(HCS) 

 
 

Up to 
~100 GB/h [7][8][9][10] 

c 

Light-sheet 
microscopy 

 

 

 
~1-10 TB/h  [11][12][13] 

d 

Cryo-Electron 
Microscopy 
(cryo-EM) 

 

 

Up to  
~1 TB/h [14][15][16] 

e 
Serial block 

face scanning 
electron 

microscopy 
(SBFSEM) 

 

~1 TB/h [17][18][19] 

 

Figure 1: Five data intensive microscopy techniques.  
We highlight five microscopy techniques that generate vast amounts of imaging data: a) single molecule 
localization microscopy (SMLM), b) high content screening (HCS), c) light sheet microscopy, d) single particle 
electron microscopy at cryogenic temperature (cryo-EM), e) serial block face scanning EM (SBFSEM). The 
indicated data production rates are orders of magnitude estimates of current state-of-the art techniques. For 
comparison, a high-end DNA sequencing instrument (Illumina X Ten) can produce ~60 GB/h of sequence 
data [20] and the rate of videos uploaded to YouTube is on the order of ~1 TB/h. 1 MB = 106 bytes; 1 GB = 
109 bytes; 1TB = 1,000 GB = 1012 bytes (corresponds roughly to 500 h of HD-TV video); 1PB =  1,000 TB = 
1015 bytes (~13 years of HD-TV video). Images are reprinted with permission from  Nature Publishing Group(b, 
d, e left), the American Association for the Advancement of Science (c) and Elsevier (c, e right).  
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Introduction 

 

Microscopy has been at the forefront of biological research since centuries, and has 

enabled major breakthroughs, such as the discovery of microorganisms in the 17th 

century or that of chromosomes in the 19th century. In those times, analyzing 

microscopy data meant that an investigator looked through the microscope and drew 

sketches to report the observations. The digital images produced by modern 

microscopes are still most often analyzed by visual inspection, sometimes augmented 

by manual, computer assisted, quantification. However, powerful imaging 

technologies are now on the rise, that outgrow, often vastly, the capacity of manual 

analyses and human inspection. These technologies allow us to observe the 

ultrastructure of cells at molecular or atomic resolution, study the dynamics of single 

molecules, analyze the effect of mutating every single gene in the genome, or monitor 

the development of entire organisms at subcellular detail. The amount and complexity 

of these data scream for automated analysis, and harvesting the quantitative 

information that they contain has much to offer for computational models of biological 

systems. In this perspective, we highlight five microscopy approaches (Fig. 1) that 

exemplify the production of massive imaging data, and discuss some emerging trends 

and challenges (Fig. 2).  

 

Single molecule localization microscopy 

 

A major advance in light microscopy over the past decades has been the advent of 

super-resolution methods, which have pushed the limit of resolution due to diffraction 

from ~200-300 nm down to ~20 nm or less. For a given field of view, super-resolution 

images contain at least ~100 times more pixels than conventional microscopy images 

(~1,000 times more for 3D images). An important and widely popular class of super-

resolution methods include those called photoactivated localization microscopy 

(PALM), stochastic optical reconstruction microscopy (STORM) or points 

accumulation for imaging in nanoscale topography (PAINT) [1], [2][3], These methods 

are based on the accurate localization of individual molecules undergoing stochastic 

blinking or binding and are often collectively designated as single molecule localization 

microscopy (SMLM). In recent years, SMLM has driven a range of discoveries in cell 

biology, such as deciphering the highly organized architecture of focal adhesions into 
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distinct protein-specific layers [21], identifying a periodic structure of cytoskeletal 

proteins in neuronal axons [22], or discriminating among structural models of nuclear 

pore complexes [23].  

In order to obtain a single super-resolution image, SMLM typically requires ~104-105 

diffraction limited (i.e. low resolution) images, thereby increasing the data volume to 

~100 GB (1011 bytes) per experiment; with fast, kHz-rate cameras, the image 

throughput can reach Terabytes (TB, or 1012 bytes) per hour (Fig. 1a). These raw, low 

resolution images, each of which only shows a few fluorescent spots, are of little use 

on their own. In order to obtain super-resolution visualizations, the precise, subpixelic 

coordinates of individual molecules must be determined from these spots, which can 

easily number in the tens of millions. Manually determining these coordinates with high 

precision is impossible, and therefore algorithms have been used from the beginning 

of SMLM [1]–[3]. Although computing the position of a molecule from a fluorescent 

spot might seem like a mundane task, performing this precisely and reliably is critical 

for the quality and resolution of the final image. The intrinsic stochasticity of single 

molecule images, which arises from photon counting noise and other factors, makes 

absolute precision impossible. While a variety of ad-hoc algorithms have been 

developed over the years, state-of-the art methods usually frame single molecule 

localization as a statistical detection and estimation problem. This framework provides 

a sound basis to derive fundamental performance bounds, such as the Cramer-Rao 

limit to localization precision[24], and to design statistically optimal algorithms that 

approach the fundamental limit, such as maximum likelihood estimators (MLE). 

Despite this common theme, algorithms still differ in many ways, including the choice 

of optimization algorithm to calculate the MLE, the assumptions about the 

microscope’s optical properties, image noise, the background, drift, fluorophore 

photophysics, etc. Several tens of competing software solutions have been proposed 

so far, creating the need for an objective and unbiased comparison. As is now common 

practice for many applications of image processing, an online challenge was 

organized, where different algorithms could be quantitatively compared against a 

common simulated ground truth, according to criteria such as localization precision, 

detection recall, speed, and ease of use [25]. This competition is a useful milestone 

for practitioners of SMLM, facilitating the choice of the best performing software 

solutions. However, this competition is by no means a final word, since many 

challenges remain to be addressed, such as multicolor or 3D SMLM, and as new 
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algorithms steadily continue to appear, in part to accompany the ever expanding 

palette of optical systems [5], [26], [27]. New installments of this competition are 

therefore, already underway. 

 

Processing SMLM data does not necessarily end with the display of a super-resolution 

image. Molecular localizations can be further analyzed in various ways to yield more 

quantitative information. For example, pair-correlation analyses allow to test 

subdiffraction protein clusters for spatial randomness and measure their size [28]. 

Algorithms based on kinetic photoswitching models can count single proteins, or 

measure molecular orientations [29] [30]. An even larger realm for downstream 

analyses is opened by live cell experiments, when molecules are followed over time, 

as in sptPALM, where thousands of molecular trajectories are obtained [6]. Tracking 

moving molecules is more difficult than localizing immobilized molecules, and various 

methods have been proposed, often based on different ways to link detected 

molecules across time points [31]. The ability to extract many thousands of individual 

molecular trajectories from an sptPALM experiment has inspired the development of 

statistical methods, often based on Bayesian inference, to determine biophysical 

properties such as transport states, diffusion maps or potential energy landscapes [32] 

[33]. Such data can provide useful biophysical information on molecular dynamics, for 

example by determining how frequently mRNP cargos switch between directed 

transport along microtubules and free diffusion [32], or by measuring the interaction 

energies between molecules [33]. These parameters can then inform stochastic 

simulations of these biophysical processes. Combinatorial labeling and spectral 

discrimination techniques begin to make possible the imaging and quantification of 

tens of proteins and thousands of RNA species in the same cells [34][35][36]. Such 

methods open the door to spatially resolved transcriptomics and the construction of 

models of stochastic gene expression and gene regulatory networks in single cell level 

[29], [37][38]. Future developments may allow to image multiple protein or RNA 

species simultaneously at the single molecule level. When this will be extended to live 

cells, it should become possible to infer causal relationships and to build predictive 

dynamic models of molecular pathways in their cellular context.   

 

 

Image based screening 
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A mainstay approach in genetics is to mutate or silence an individual gene, and 

characterize the resulting phenotype by microscopy. High content screening (HCS) 

can scale up such studies to entire genomes using automated microscopes and 

sample preparation in combination with tools to systematically manipulate gene 

expression, e.g. RNA interference or CRISPR/Cas9 genome editing (Fig. 1b) [9], [39]. 

HCS projects can generate tens of TB of data, especially when dynamic imaging is 

performed on live cells. This was exemplified by a massive study, in which each of 

21,000 genes was individual silenced by siRNA, and cells were monitored by video 

microscopy for 2 days. The resulting data set contained almost 20 million cell division 

events and was used to identify hundreds of genes, more than doubling the number 

of genes known to be involved in this fundamental cellular function [7]. Visual 

inspection of all resulting movies would have taken hundreds or thousands of hours 

and lack objectivity and reproducibility. Similar difficulties can arise for static data, e.g. 

images of fluorescently labelled RNA[40]. Therefore, images from HCS studies are 

usually processed by algorithms that transform them into large sets of quantitative 

descriptors called features. These features may include biologically meaningful 

quantities such as nuclear size or transcript numbers, or less readily interpretable 

measures such as image texture or entropy. The features are then typically fed to 

machine learning algorithms that seek to associate images to particular phenotypes. 

In supervised machine learning, a set of example images are manually assigned to 

previously defined phenotypic classes, such as cell division defects [7] or a polarized 

distribution of RNA [41], [42]. Then, the algorithm learns to automatically determine 

the phenotype from appropriate combinations of the features, which are then used to 

phenotype images taken under new experimental conditions. While support vector 

machines and random forests have been used successfully, methods based on deep 

artificial neural networks (deep learning) have gained renewed prominence in recent 

years [43]. A key advantage of deep learning methods is their ability to automatically 

learn suitable features directly from the images (‘end-to-end learning’), which generally 

outperform standard preimposed feature sets. This was illustrated by a recent study 

where deep convolutional neural nets were employed to assign cell phenotypes in 

response to drug treatments. This deep learning method was shown to outperform 

previous methods in 5 out of 8 benchmark data sets and to correctly quantify drug 

potency [10]. In unsupervised machine learning, features can be learned on training 
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data without phenotypic annotations and used to cluster similar images together, 

thereby defining groups of functionally related genes, or compounds with similar 

phenotypic effects, or detect anomalies[7], [42]. Deep neural nets such as 

autoencoders provide a powerful means to learn appropriate features for such 

tasks[44], [45].  

A common criticism of statistical approaches and machine learning is their supposed 

inability to address causal links, e.g. between molecules and phenotypes. While 

correlation does not imply causation, the reverse implication holds true, hence 

screening for correlations is at the very least an efficient way to filter out potential 

causal links that can be tested by other experimental means. In addition, tools such 

as belief networks can be used to determine conditional links between variables and 

hence approach causal understanding[9]. Furthermore, video-microscopy data can be 

used to dissect the temporal hierarchy of molecular factors involved in a given cellular 

process by analyzing correlations between stochastic image fluctuations. This was 

demonstrated for example in a study of actin assembly at the cell membrane, that 

determined the formin mDia1 as the initiator of cell protrusions, and Arp2/3 recruitment 

as a downstream step [46]. Such analyses do not require experimental perturbations 

and can reveal the contribution of individual molecules to redundant pathways in a 

more truthful way than standard genetic perturbation experiments, whose 

interpretation can be obscured by adaptation mechanisms [47]. It will be interesting to 

see how kindred approaches can be combined with state-of-the-art machine learning 

methods to help uncover mechanistic links between genotypes and phenotypes in 

image-based screening.   

 

Light sheet microscopy 

 

The study of developing organisms demands dynamic imaging of living multicellular 

systems at high spatio-temporal resolution in physiological conditions. This has long 

been hampered by photobleaching, i.e. the rapid decay of fluorescence due to intense 

laser illumination of the whole sample, and the associated toxicity due to 

photodamage. Light sheet illumination techniques (also known as single plane 

illumination microscopy, or SPIM), which restrict laser excitation to the focal plane 

have essentially removed this hurdle and enabled the 3D observation of living 

multicellular organisms in physiological conditions over several days or more [48], [49] 
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(Fig. 1c). SPIM has allowed, for example, to monitor developing zebrafish embryos 

with sufficient spatiotemporal resolution to follow the lineage of thousands of cells[50].  

Modern light sheet microscopes can produce imaging data at rates of ~10 TB/h[51]. 

In order to make sense of these data, investigators are developing methods to 

computationally align and fuse the raw images, and to automatically segment and 

track individual cells in 3D and in real time through their divisions, thereby generating 

dynamic ‘digital embryos’[50][52]. These data are invaluable to inform or test 

predictive biomechanical and/or genetic 3D models of development[53], [54].   

 

Electron microscopy 

 

Despite the advent of super-resolution light microscopy, electron microscopy (EM) still 

offers views of the cellular ultrastructure at unequaled spatial resolution.  Freezing the 

sample to cryogenic temperatures maintains structures in their native state, minimizing 

the artefacts that plagued older fixation protocols. Recent advances in detector 

technology and sample preparation have pushed the resolution even closer to the 

atomic level, and it is now possible to reconstruct 3D density maps of molecules from 

cryo-EM data with Angstrom-scale detail, a feat hitherto reserved to X-ray 

crystallography [55] (Fig. 1d). To achieve this, very noisy 2D EM images of thousands 

or millions of copies of a particle are processed in order to computationally reconstruct 

a single 3D structure (or a small number of conformations). As in SMLM, the 

determination of these structures is nowadays usually performed using MLE 

algorithms [16]. The selection of single particle images as input to the MLE 

reconstruction is still often done manually, although computational strategies including 

template matching are also being employed. Automated template matching however 

needs to be carefully controlled for biases, or else arbitrary patterns may emerge from 

pure noise [56]. When properly controlled, cryo-EM now provides a very attractive tool 

to determine 3D structures with near atomic resolution, which is applicable to 

molecules that are hard to crystallize (e.g. membrane or nuclear proteins) or that are 

present in multiple, even short-lived, conformations. Recent highlights demonstrating 

the power of cryo-EM include the elucidation of the glutamate dehydrogenase 

structure at <2 Å resolution or the structure of the HIV envelope trimer [15] [14]. 

Advances in data analysis and sample preparation will likely further improve this 
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resolution and extend applicability to more complex cases, such as highly flexible 

domains. 

 

While single particle cryo-EM aims to characterize the atomic structures of molecules, 

other EM approaches are being employed to systematically explore the organization 

of large tissue volumes. This is most prominent in the field of connectomics, which 

seeks to determine the wiring diagram of the brain [57]. Scanning electron microscopy 

(SEM) combined with automated cutting or ablation methods is used to image pieces 

of the fly or mouse brain slice by slice, taking thousands of images at the nanometer-

scale resolution needed to identify individual synapses[18], [57] (Fig. 1e). Such 

projects are on track to deliver staggering amounts of data. It has been estimated, for 

example, that imaging a full rat cortex will generate ~ 1 Exabyte of data (1EB 

=1,000 PB =1018 bytes), and a human cortex ~1 Zetabyte (1 ZB=1021 bytes), an order 

of magnitude approaching that of the annual Internet traffic [57]. Storing and handling 

such data volumes is the most immediate, but by no means trivial issue: with current 

technology, entire rooms might be required to store images from a single mouse brain. 

Beyond this, a major computational challenge is to reliably and efficiently trace 

individual neurons and their connections in 3D. It has been estimated that manually 

determining the wiring diagram of a whole mouse brain would take tens of millions of 

years [17]. To spur the development of automated tracing algorithms, competitions 

such as ISBI 2012 or MICCAI CREMI provide manually annotated training data and 

blind test data [58]. As in many other imaging applications, the current winners of these 

challenges are segmentation algorithms based on deep learning, i.e. artificial neural 

networks are best at mapping biological neural networks [59][17], [60]. These wiring 

diagrams, once accurately reconstructed, can yield unprecedented insights into the 

architecture and function of neuronal circuits, e.g. in the insect visual system [61]  or 

the mouse neocortex[18] and instruct computational models of neuronal systems.  
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Figure 2: Trends in biological imaging and computational analysis.  
Bubbles highlight selected trends in biological imaging, from image acquisition (a), to 
storage (b), processing (c), and modeling (d), some of which are discussed in the text. 
Arrows indicate the direction of information flow.   
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Concluding remarks 

 

As we have illustrated, automated high throughput and high resolution microscopy 

methods are generating a data tsunami that rivals or exceeds that delivered by DNA 

sequencing. Although smart microscopy methods may somewhat mitigate this trend 

by focusing image acquisition where it is most informative (e.g. [13]), the data deluge 

will surely accelerate. Further improvements in spatio-temporal resolution and 

molecular multiplexing will automatically increase the data output, as will combinations 

of methods mentioned above, e.g. SMLM with light sheets [12] or super-resolution 

HCS (Fig. 2a). The most immediate informatics challenge is how to reliably store such 

large imaging data (Fig. 2b). Unlike in DNA sequencing, where the raw data used to 

identify base pairs are routinely discarded, most microscopy projects still keep the 

original images. Keeping the raw data or uploading it to public data bases is necessary 

to reproduce analysis results, and is therefore increasingly required by journals. 

Moreover, this allows to extract new information by computational reanalysis of the 

data using improved algorithms, for example to determine 3D localizations from 2D 

SMLM images[62] or obtain higher resolution structures in single particle EM[63]. 

Nevertheless, storing might become too expensive in some applications, forcing 

researchers to discard the raw data and replace them by strongly condensed 

representations, e.g. molecule coordinates instead of the low resolution images in 

SMLM, or cell positions and trajectories instead of raw SPIM images. For some 

applications, it might even be more convenient to repeat the experiment rather than 

storing and reanalyzing old data[64]. This means that the image storage problem can 

no longer be dissociated from that of image processing (Fig. 2c) 

As discussed for some examples above, the community is developing increasingly 

powerful computational tools to turn images into biologically relevant information. 

These algorithms are also taking advantage of advances in computing power, and in 

particular increasingly make use of graphical processing units (GPUs), which enable 

considerable speed-ups for highly parallel calculations compared to CPUs. To this 

date, no single standard algorithm has emerged for processing even some of the 

apparently simplest images, as those of single molecules in SMLM. There will likely 

be no definitive consensus on how to best analyze biological imaging data in the near 

future. Nevertheless, within the wide landscape of computational methods, we see two 
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strong trends: probabilistic inference methods, in particular MLE, and machine 

learning approaches, in particular deep learning (Fig. 2c). Each of these two 

approaches is suited to a different class of problems. MLE is a favored approach 

whenever the image analysis problem can be formulated as extracting a finite set of 

deterministic parameters and a procedure is available to calculate the probability of 

an image given these parameters. This generally requires a computational model of 

the image formation, including optics and noise, and assumptions about the underlying 

objects, for example that they consist of single point light sources in SMLM, or of 

projections along various angles of identical copies of the same structure in single 

particle EM[16], [24]. Bayesian inference methods can also be applied in this case, 

and provide several added benefits, including the determination of entire parameter 

distributions rather than a single estimation, a reduced need for tuning technical 

parameters, and conversely the option to incorporate prior knowledge about the 

structures, such as photoswitching probabilities in SMLM, or degrees of symmetry in 

cryo-EM [65][66], [67].  

For many applications, however, such as the segmentation of neurons and dendrites 

in 3D EM stacks, the complexity of the biological structures implies that explicit 

probabilistic models are not available. This difficulty is well known in the field of general 

computer vision, and indeed much work in biological image analysis is directly drawn 

from this larger research area. Until recently, however, computer vision was arguably 

characterized by rather incremental progress and a myriad of competing approaches, 

which usually reached state-of-the-art performance only in narrow application 

domains. On this backdrop, we consider the recent breakthroughs achieved by deep 

learning algorithms as refreshing, since these methods appear as both much more 

generic and powerful, and provide a seamless means to transfer human knowledge 

into an algorithm that can often outperform human experts [68] [43][69]. It therefore 

seems safe to predict that in the coming years deep learning and related machine 

learning approaches will become the dominant approach for analyzing complex 

biological images, from the segmentation of cells in EM or light sheet microscopy to 

the automated annotation of gene phenotypes in HCS. Because deep learning thrives 

on training data, the success of future image processing efforts will largely depend on 

open access to vast annotated image data bases. Projects such as the Image Data 

Resource (IDR), the Electron Microscopy Public Image Archive (EMPIAR) or the Open 

Connectome [70][71], which aim to compile such data, are therefore likely to become 
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crucial resources and should be encouraged. Efficient reanalysis of these data, e.g. 

using deep learning methods, requires flexible allocation of large computing 

resources, such as GPU clusters. In this context, cloud computing offers a potentially 

attractive solution, provided that data transfer is not prohibitive [72][73].   

Another important trend, cutting through all methodological approaches, are 

competitions. Well organized competitions such as those mentioned above for SMLM 

or connectomics are a compelling means to guide users towards the best software 

solutions, and to spur the development of better solutions. Among the important 

challenges in the future will be to design test data that more fully mimic the 

complexities of real experiments, in the context of rapidly evolving instrumentation and 

applications, and to automate the setting of hyperparameters, such that algorithms 

can be used by others as successfully as by their authors. 

If properly analyzed, images from modern microscopy techniques can provide 

invaluable quantitative information on cellular and molecular structures and their 

dynamic interactions in living multicellular organisms. Together with data acquired by 

other technologies such as genomics and mass spectrometry, imaging data will 

empower the construction of computational models of cells and entire organisms and 

help move biology from a largely descriptive science to a predictive one [74] (Fig. 2d). 

Rather than drowning us, we expect that the imaging tsunami, when channeled into 

quantitative descriptions and computational models, will lift our understanding of 

biological systems to new heights.  

 

ACKNOWLEDGEMENTS: 
We thank F. Mueller and J. Krijnse Locker for helpful comments on the manuscript. 

W.O. is a scholar in the Pasteur - Paris University (PPU) International PhD program. 

C.Z. acknowledges funding by Institut Pasteur, Fondation pour la Recherche Médicale 

(Equipe FRM, DEQ 20150331762), Agence Nationale de la Recherche (ANR 14 CE10 

0018 02, ANR 11 MONU 020 02) and the Région Ile de France (DIM Malinf).  

 

 
REFERENCES: 
[1] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. 

Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging 
intracellular fluorescent proteins at nanometer resolution,” Science (80-. )., vol. 
313, no. 5793, pp. 1642–1645, 2006. 



 14 

[2] M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by 
stochastic optical reconstruction microscopy (STORM),” Nat Methods, vol. 3, 
no. 10, pp. 793–795, 2006. 

[3] A. Sharonov and R. M. Hochstrasser, “Wide-field subdiffraction imaging by 
accumulated binding of diffusing probes.,” Proc. Natl. Acad. Sci. U. S. A., vol. 
103, no. 50, pp. 18911–6, Dec. 2006. 

[*4] F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. 
Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. 
Toomre, and J. Bewersdorf, “Video-rate nanoscopy using sCMOS camera-
specific single-molecule localization algorithms.,” Nat. Methods, vol. 10, no. 7, 
pp. 653–8, Jul. 2013. 

[*5] F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. 
Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. 
Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. 
Toomre, M. J. Booth, and J. Bewersdorf, “Ultra-High Resolution 3D Imaging of 
Whole Cells,” Cell, vol. 166, no. 4, pp. 1028–1040, 2016. 

[6] S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and 
J. Lippincott-Schwartz, “High-density mapping of single-molecule trajectories 
with photoactivated localization microscopy,” Nat Methods, vol. 5, no. 2, pp. 
155–157, 2008. 

[*7] B. Neumann, T. Walter, J. K. Heriche, J. Bulkescher, H. Erfle, C. Conrad, P. 
Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. 
Kabbe, A. Wunsche, V. Satagopam, M. H. Schmitz, C. Chapuis, D. W. Gerlich, 
R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. 
Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by 
time-lapse microscopy reveals cell division genes,” Nature, vol. 464, no. 7289, 
pp. 721–727, 2010. 

[*8] N. Battich, T. Stoeger, and L. Pelkmans, “Control of Transcript Variability in 
Single Mammalian Cells,” Cell, vol. 163, no. 7, pp. 1596–1610, Dec. 2015. 

[**9] V. Graml, X. Studera, J. L. D. Lawson, A. Chessel, M. Geymonat, M. Bortfeld-
Miller, T. Walter, L. Wagstaff, E. Piddini, and R. E. Carazo-Salas, “A Genomic 
Multiprocess Survey of Machineries that Control and Link Cell Shape, 
Microtubule Organization, and Cell-Cycle Progression,” Dev. Cell, vol. 31, no. 
2, pp. 227–239, Oct. 2014. 

 
** This paper uses HCS with 3D microscopy to systematically analyze the effect of 3000 non 
essential fission yeast genes on cell shape, cell cycle and microtubule organization. Almost 
2 million images are analyzed and cellular features are analyzed using Bayesian networks to 
infer causal relations, e.g. that cell length influences microtubule length but not vice-versa, 
which was experimentally confirmed.    
 
[10] W. J. Godinez, I. Hossain, S. E. Lazic, J. W. Davies, and X. Zhang, “A Multi-

Scale Convolutional Neural Network for Phenotyping High-Content Cellular 
Images,” Bioinformatics, 2017. 

[**11] W. C. Lemon, S. R. Pulver, B. Höckendorf, K. McDole, K. Branson, J. 
Freeman, and P. J. Keller, “Whole-central nervous system functional imaging 
in larval Drosophila,” Nat. Commun., vol. 6, p. 7924, Aug. 2015. 

 
 
** Using a fast multi-view light-sheet microscope, the authors imaged the entire central 
nervous system (CNS) of a fly larva at 2-5 Hz temporal resolution. Together with improved 



 15 

image analysis tools for Terabyte-size data, this allowed them, for the first time, to follow the 
propagation of neuronal activity throughout the CNS, opening the door to a systems level 
analysis of neural network activity. 
 
 
[**12] W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. 

D. Lavis, and E. Betzig, “High-density three-dimensional localization 
microscopy across large volumes,” Nat. Methods, vol. 13, no. 4, pp. 359–365, 
Mar. 2016. 

 
 
** This work combines an advanced type of light sheet illumination (a lattice light sheet) with 
PAINT, a type of SMLM based on transient binding of dyes. This system enabled the 
authors to localize up to ~1 billion molecules with high precision and create super-resolution 
(<100 nm) images of cells and small organs up to 20 μm thick. 
 
 
[13] L. A. Royer, W. C. Lemon, R. K. Chhetri, Y. Wan, M. Coleman, E. W. Myers, 

and P. J. Keller, “Adaptive light-sheet microscopy for long-term, high-resolution 
imaging in living organisms,” Nat. Biotechnol., vol. 34, no. 12, pp. 1267–1278, 
Oct. 2016. 

[14] J. H. Lee, G. Ozorowski, and A. B. Ward, “Cryo-EM structure of a native, fully 
glycosylated, cleaved HIV-1 envelope trimer,” Science (80-. )., vol. 351, no. 
6277, pp. 1043–1048, Mar. 2016. 

[**15] A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao, M. I. Davis, R. 
Pragani, M. B. Boxer, L. A. Earl, J. L. S. Milne, and S. Subramaniam, 
“Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery,” Cell, vol. 
165, no. 7, pp. 1698–1707, Jun. 2016. 

 
** This study reports the first structure with 1.8 Å resolution obtained by cryo-EM single 
particle analysis. This resolution allowed to visualize the densities of each amino-acid in the 
core of the protein, even though a large fraction of the protein is conformationally mobile. 
 
 
[16] A. Punjani, J. L. Rubinstein, D. J. Fleet, and M. A. Brubaker, “cryoSPARC: 

algorithms for rapid unsupervised cryo-EM structure determination,” Nat. 
Methods, Feb. 2017. 

[17] S. Dorkenwald, P. J. Schubert, M. F. Killinger, G. Urban, S. Mikula, F. Svara, 
and J. Kornfeld, “Automated synaptic connectivity inference for volume 
electron microscopy,” Nat. Methods, Feb. 2017. 

[18] N. Kasthuri, K. J. Hayworth, D. R. Berger, R. L. Schalek, J. A. Conchello, S. 
Knowles-Barley, D. Lee, A. Vázquez-Reina, V. Kaynig, T. R. Jones, M. 
Roberts, J. L. Morgan, J. C. Tapia, H. S. Seung, W. G. Roncal, J. T. 
Vogelstein, R. Burns, D. L. Sussman, C. E. Priebe, H. Pfister, and J. W. 
Lichtman, “Saturated Reconstruction of a Volume of Neocortex,” Cell, vol. 162, 
no. 3, pp. 648–661, 2015. 

 
 
** The authors developed an automated pipeline wherein a 80,000 µm3 piece of mouse 
brain was automatically cut into thousands of thin sections by an ultramicrotome and imaged 
by scanning electron microscopy at nanometer resolution. Using manual and automated 



 16 

segmentation they reconstructed cellular and subcellular structures and created an online 
data base of 1,700 synapses and find that connections between neurons cannot be 
explained by their proximity alone.  
 
 
 
[19] A. A. Wanner, C. Genoud, T. Masudi, L. Siksou, and R. W. Friedrich, “Dense 

EM-based reconstruction of the interglomerular projectome in the zebrafish 
olfactory bulb,” Nat. Neurosci., vol. 19, no. 6, pp. 816–825, Apr. 2016. 

[20] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron, R. 
Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson, “Big Data: Astronomical or 
Genomical?,” PLoS Biol., vol. 13, no. 7, p. e1002195, Jul. 2015. 

[21] P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. 
Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of 
integrin-based cell adhesions,” Nature, vol. 468, no. 7323, pp. 580–584, Nov. 
2010. 

[22] K. Xu, G. Zhong, and X. Zhuang, “Actin, Spectrin, and Associated Proteins 
Form a Periodic Cytoskeletal Structure in Axons,” Science (80-. )., vol. 339, no. 
6118, 2013. 

[*23] A. Szymborska, A. de Marco, N. Daigle, V. C. Cordes, J. A. G. Briggs, and J. 
Ellenberg, “Nuclear pore scaffold structure analyzed by super-resolution 
microscopy and particle averaging.,” Science, vol. 341, no. 6146, pp. 655–8, 
Aug. 2013. 

[24] R. J. Ober, S. Ram, and E. S. Ward, “Localization Accuracy in Single-Molecule 
Microscopy,” Biophys. J., vol. 86, no. 2, pp. 1185–1200, 2004. 

[**25] D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. 
Unser, “Quantitative evaluation of software packages for single-molecule 
localization microscopy,” Nat. Methods, vol. 12, no. 8, pp. 717–724, Jun. 2015. 

 
** References [25] and [58] illustrate how challenges can be used to objectively compare 
competing algorithms against simulated or manually defined ground truth. Ref. [25] 
addresses image analysis software for SMLM, ref. [58] software for EM images in the 
context of connectomics.  
 
 
[26] A. von Diezmann, Y. Shechtman, and W. E. Moerner, “Three-Dimensional 

Localization of Single Molecules for Super-Resolution Imaging and Single-
Particle Tracking,” Chem. Rev., p. acs.chemrev.6b00629, Feb. 2017. 

[27] S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D Super-resolution Imaging 
with a Self-bending Point Spread Function.,” Nat. Photonics, vol. 8, no. 4, pp. 
302–306, Jan. 2014. 

[28] P. Sengupta, T. Jovanovic-Talisman, D. Skoko, M. Renz, S. L. Veatch, and J. 
Lippincott-Schwartz, “Probing protein heterogeneity in the plasma membrane 
using PALM and pair correlation analysis,” Nat Methods, vol. 8, no. 11, pp. 
969–975, 2011. 

[*29] S.-H. Lee, J. Y. Shin, A. Lee, and C. Bustamante, “Counting single 
photoactivatable fluorescent molecules by photoactivated localization 
microscopy (PALM).,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 43, pp. 
17436–41, Oct. 2012. 

[30] M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. E. Moerner, “The 
Role of Molecular Dipole Orientation in Single-Molecule Fluorescence 



 17 

Microscopy and Implications for Super-Resolution Imaging,” ChemPhysChem, 
vol. 15, no. 4, pp. 587–599, Mar. 2014. 

[31] N. Chenouard, I. Smal, F. de Chaumont, M. Maška, I. F. Sbalzarini, Y. Gong, 
J. Cardinale, C. Carthel, S. Coraluppi, M. Winter, A. R. Cohen, W. J. Godinez, 
K. Rohr, Y. Kalaidzidis, L. Liang, J. Duncan, H. Shen, Y. Xu, K. E. G. 
Magnusson, J. Jaldén, H. M. Blau, P. Paul-Gilloteaux, P. Roudot, C. Kervrann, 
F. Waharte, J.-Y. Tinevez, S. L. Shorte, J. Willemse, K. Celler, G. P. van 
Wezel, H.-W. Dan, Y.-S. Tsai, C. O. de Solórzano, J.-C. Olivo-Marin, and E. 
Meijering, “Objective comparison of particle tracking methods,” Nat. Methods, 
vol. 11, no. 3, pp. 281–289, Jan. 2014. 

[32] N. Monnier, S.-M. Guo, M. Mori, J. He, P. Lénárt, and M. Bathe, “Bayesian 
Approach to MSD-Based Analysis of Particle Motion in Live Cells,” Biophys. J., 
vol. 103, no. 3, pp. 616–626, 2012. 

[33] M. El Beheiry, M. Dahan, and J.-B. Masson, “InferenceMAP: mapping of 
single-molecule dynamics with Bayesian inference,” Nat. Methods, vol. 12, no. 
7, pp. 594–595, 2015. 

[34] Z. Zhang, S. J. Kenny, M. Hauser, W. Li, and K. Xu, “Ultrahigh-throughput 
single-molecule spectroscopy and spectrally resolved super-resolution 
microscopy,” Nat. Methods, vol. 12, no. 10, pp. 935–938, Aug. 2015. 

[35] R. Jungmann, M. S. Avendaño, J. B. Woehrstein, M. Dai, W. M. Shih, and P. 
Yin, “Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and 
Exchange-PAINT,” Nat. Methods, vol. 11, no. 3, pp. 313–318, Feb. 2014. 

[**36] K. H. Chen, A. N. Boettiger, J. R. Moffitt, S. Wang, and X. Zhuang, “Spatially 
resolved, highly multiplexed RNA profiling in single cells.,” Science, vol. 348, 
no. 6233, p. aaa6090, Apr. 2015. 

 
 
**This study uses a combinatorial labeling strategy to visualize up to 1,000 distinct mRNA 

species in the same cells at the single molecule level. The authors use their data to 
determine covarying genes and propose new functional annotations for ~100 genes. 
This paper is a milestone towards single cell transcriptomics. 

 
 
[37] B. Munsky, G. Neuert, and A. van Oudenaarden, “Using Gene Expression 

Noise to Understand Gene Regulation,” Science (80-. )., vol. 336, no. 6078, 
pp. 183–187, Apr. 2012. 

[38] K. Tantale, F. Mueller, A. Kozulic-Pirher, A. Lesne, J.-M. Victor, M.-C. Robert, 
S. Capozi, R. Chouaib, V. Bäcker, J. Mateos-Langerak, X. Darzacq, C. 
Zimmer, E. Basyuk, and E. Bertrand, “A single-molecule view of transcription 
reveals convoys of RNA polymerases and multi-scale bursting.,” Nat. 
Commun., vol. 7, p. 12248, Jul. 2016. 

[39] M. Mattiazzi Usaj, E. B. Styles, A. J. Verster, H. Friesen, C. Boone, and B. J. 
Andrews, “High-Content Screening for Quantitative Cell Biology,” Trends Cell 
Biol., vol. 26, no. 8, pp. 598–611, 2016. 

[40] N. Battich, T. Stoeger, and L. Pelkmans, “Control of Transcript Variability in 
Single Mammalian Cells,” Cell, vol. 163, no. 7, pp. 1596–1610, Dec. 2015. 

[41] T. R. Jones, A. E. Carpenter, M. R. Lamprecht, J. Moffat, S. J. Silver, J. K. 
Grenier, A. B. Castoreno, U. S. Eggert, D. E. Root, P. Golland, and D. M. 
Sabatini, “Scoring diverse cellular morphologies in image-based screens with 
iterative feedback and machine learning.,” Proc. Natl. Acad. Sci. U. S. A., vol. 



 18 

106, no. 6, pp. 1826–31, Feb. 2009. 
[42] N. Battich, T. Stoeger, and L. Pelkmans, “Image-based transcriptomics in 

thousands of single human cells at single-molecule resolution,” Nat. Methods, 
vol. 10, no. 11, pp. 1127–1133, Oct. 2013. 

[43] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 
7553, pp. 436–444, May 2015. 

[44] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked 
Denoising Autoencoders: Learning Useful Representations in a Deep Network 
with a Local Denoising Criterion,” J. Mach. Learn. Res., vol. 11, no. Dec, pp. 
3371–3408, 2010. 

[45] C. Kandaswamy, L. M. Silva, L. A. Alexandre, and J. M. Santos, “High-Content 
Analysis of Breast Cancer Using Single-Cell Deep Transfer Learning,” J. 
Biomol. Screen., vol. 21, no. 3, pp. 252–259, 2016. 

[**46] K. Lee, H. L. Elliott, Y. Oak, C.-T. Zee, A. Groisman, J. D. Tytell, and G. 
Danuser, “Functional Hierarchy of Redundant Actin Assembly Factors 
Revealed by Fine-Grained Registration of Intrinsic Image Fluctuations,” Cell 
Syst., vol. 1, no. 1, pp. 37–50, Jul. 2015. 

[47] E. S. Welf and G. Danuser, “Using Fluctuation Analysis to Establish Causal 
Relations between Cellular Events without Experimental Perturbation,” 
Biophys. J., vol. 107, no. 11, pp. 2492–2498, 2014. 

[48] J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical 
sectioning deep inside live embryos by selective plane illumination 
microscopy,” Science (80-. )., vol. 305, no. 5686, p. 1007, 2004. 

[49] B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. 
Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-
Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. 
D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Bohme, S. W. 
Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice 
light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal 
resolution,” Science (80-. )., vol. 346, no. 6208, pp. 1257998–1257998, Oct. 
2014. 

[50] P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction 
of Zebrafish Early Embryonic Development by Scanned Light Sheet 
Microscopy,” Science (80-. )., vol. 322, no. 5904, 2008. 

[51] E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, “Guide to light-sheet 
microscopy for adventurous biologists,” Nat. Methods, vol. 12, no. 1, pp. 30–
34, Dec. 2014. 

[52] E. Faure, T. Savy, B. Rizzi, C. Melani, O. Stašová, D. Fabrèges, R. Špir, M. 
Hammons, R. Čúnderlík, G. Recher, B. Lombardot, L. Duloquin, I. Colin, J. 
Kollár, S. Desnoulez, P. Affaticati, B. Maury, A. Boyreau, J.-Y. Nief, P. Calvat, 
P. Vernier, M. Frain, G. Lutfalla, Y. Kergosien, P. Suret, M. Remešíková, R. 
Doursat, A. Sarti, K. Mikula, N. Peyriéras, and P. Bourgine, “A workflow to 
process 3D+time microscopy images of developing organisms and reconstruct 
their cell lineage,” Nat. Commun., vol. 7, p. 8674, Feb. 2016. 

[**53] J. Delile, M. Herrmann, N. Peyriéras, and R. Doursat, “A cell-based 
computational model of early embryogenesis coupling mechanical behaviour 
and gene regulation,” Nat. Commun., vol. 8, p. 13929, Jan. 2017. 

 
** This study introduces an open-source software platform for simulating complex collective 
dynamics of thousands of cells in morphogenesis by coupling models of mechanical 



 19 

behaviour and gene regulation. The method was used to simulate the massive dynamic 
reorganization of cells during early zebrafish embryogenesis and quantitatively compared to 
experimental data.  
 
 
[54] M. Rauzi, U. Krzic, T. E. Saunders, M. Krajnc, P. Ziherl, L. Hufnagel, and M. 

Leptin, “Embryo-scale tissue mechanics during Drosophila gastrulation 
movements,” Nat. Commun., vol. 6, p. 8677, Oct. 2015. 

[55] E. H. Egelman, “The Current Revolution in Cryo-EM,” Biophys. J., vol. 110, no. 
5, pp. 1008–1012, Mar. 2016. 

[56] R. Henderson, “Avoiding the pitfalls of single particle cryo-electron microscopy: 
Einstein from noise.,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 45, pp. 
18037–41, Nov. 2013. 

[57] J. W. Lichtman, H. Pfister, and N. Shavit, “The big data challenges of 
connectomics,” Nat. Neurosci., vol. 17, no. 11, pp. 1448–1454, Oct. 2014. 

[**58] I. Arganda-Carreras, S. C. Turaga, D. R. Berger, D. Cireşan, A. Giusti, L. M. 
Gambardella, J. Schmidhuber, D. Laptev, S. Dwivedi, J. M. Buhmann, T. Liu, 
M. Seyedhosseini, T. Tasdizen, L. Kamentsky, R. Burget, V. Uher, X. Tan, C. 
Sun, T. D. Pham, E. Bas, M. G. Uzunbas, A. Cardona, J. Schindelin, and H. S. 
Seung, “Crowdsourcing the creation of image segmentation algorithms for 
connectomics,” Front. Neuroanat., vol. 9, p. 142, Nov. 2015. 

[59] I. Arganda-Carreras, S. C. Turaga, D. R. Berger, D. Cireşan, A. Giusti, L. M. 
Gambardella, J. Schmidhuber, D. Laptev, S. Dwivedi, J. M. Buhmann, T. Liu, 
M. Seyedhosseini, T. Tasdizen, L. Kamentsky, R. Burget, V. Uher, X. Tan, C. 
Sun, T. D. Pham, E. Bas, M. G. Uzunbas, A. Cardona, J. Schindelin, and H. S. 
Seung, “Crowdsourcing the creation of image segmentation algorithms for 
connectomics,” Front. Neuroanat., vol. 9, p. 142, Nov. 2015. 

[60] T. Beier, C. Pape, N. Rahaman, T. Prange, S. Berg, D. D. Bock, A. Cardona, 
G. W. Knott, S. M. Plaza, L. K. Scheffer, U. Koethe, A. Kreshuk, and F. A. 
Hamprecht, “Multicut brings automated neurite segmentation closer to human 
performance,” Nat. Methods, vol. 14, no. 2, pp. 101–102, Jan. 2017. 

[61] S. Takemura, A. Bharioke, Z. Lu, A. Nern, S. Vitaladevuni, P. K. Rivlin, W. T. 
Katz, D. J. Olbris, S. M. Plaza, P. Winston, T. Zhao, J. A. Horne, R. D. Fetter, 
S. Takemura, K. Blazek, L.-A. Chang, O. Ogundeyi, M. A. Saunders, V. 
Shapiro, C. Sigmund, G. M. Rubin, L. K. Scheffer, I. A. Meinertzhagen, and D. 
B. Chklovskii, “A visual motion detection circuit suggested by Drosophila 
connectomics,” Nature, vol. 500, no. 7461, pp. 175–181, Aug. 2013. 

[62] C. Franke, M. Sauer, and S. van de Linde, “Photometry unlocks 3D information 
from 2D localization microscopy data,” Nat. Methods, vol. 14, no. 1, pp. 41–44, 
Nov. 2016. 

[63] S. H. w Scheres, “Beam-induced motion correction for sub-megadalton cryo-
EM particles,” Elife, vol. 3, p. e03665, 2014. 

[64] E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, “Guide to light-sheet 
microscopy for adventurous biologists,” Nat. Methods, vol. 12, no. 1, pp. 30–
34, Dec. 2014. 

[65] S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. 
Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization 
microscopy reveals nanoscale podosome dynamics,” Nat Methods, vol. 9, no. 
2, pp. 195–200, 2012. 

[66] P. Joubert and M. Habeck, “Bayesian inference of initial models in cryo-



 20 

electron microscopy using pseudo-atoms.,” Biophys. J., vol. 108, no. 5, pp. 
1165–75, Mar. 2015. 

[67] S. H. W. Scheres, “A Bayesian View on Cryo-EM Structure Determination,” J. 
Mol. Biol., vol. 415, no. 2, pp. 406–418, Jan. 2012. 

[68] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. 
Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman, P. C. 
Nelson, J. L. Mega, and D. R. Webster, “Development and Validation of a 
Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal 
Fundus Photographs,” JAMA, vol. 316, no. 22, p. 2402, Dec. 2016. 

[*69] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for 
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science, 
2015, vol. 9351, pp. 234–241. 

[70] E. Williams, J. Moore, S. W. Li, G. Rustici, A. Tarkowska, A. Chessel, S. Leo, 
B. Antal, R. K. Ferguson, U. Sarkans, A. Brazma, R. E. Carazo-Salas, and J. 
Swedlow, “The Image Data Resource: A Scalable Platform for Biological 
Image Data Access, Integration, and Dissemination,” bioRxiv, 2016. 

[71] A. Iudin, P. K. Korir, J. Salavert-Torres, G. J. Kleywegt, and A. Patwardhan, 
“EMPIAR: a public archive for raw electron microscopy image data,” Nat. 
Methods, vol. 13, no. 5, pp. 387–388, Mar. 2016. 

[72] M. A. Cianfrocco and A. E. Leschziner, “Low cost, high performance 
processing of single particle cryo-electron microscopy data in the cloud,” Elife, 
vol. 4, no. MAY, pp. 1–10, 2015. 

[73] Y. S. Hu, X. Nan, P. Sengupta, J. Lippincott-Schwartz, and H. Cang, 
“Accelerating 3B single-molecule super-resolution microscopy with cloud 
computing,” Nat. Methods, vol. 10, no. 2, pp. 96–97, 2013. 

[*74] J. C. Sanghvi, S. Regot, S. Carrasco, J. R. Karr, M. V Gutschow, B. Bolival, 
and M. W. Covert, “Accelerated discovery via a whole-cell model,” Nat. 
Methods, vol. 10, no. 12, pp. 1192–1195, Nov. 2013. 

 
 


